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NOTE: All Section numbers, all section headings, and equation ngnifeform (6.X) or (7.X) are with reference to
Mukhanov and Winitzki (M&W), Chaps. 6 and 7.

TYPOS:

pg. 85, (7.2)H should be squared and havA aubscript.
pg. 86, % line after (7.4): “that” should be — than —.
pg. 91, #line: A should be subscript.

Big picture note

M&W Chap. 6 dealt with homogeneous, spatially isotropetially flat (but generally not 4D flat), expanding univeos
metric form

ds® =dt® —a®(t) gydx'dx! =a®(n)n,, dx*dx”, (generalform)  (6.1) and (6.2) in M&W (1)

where 7 is different froms,,. In M&W Chap. 7, we deal with the de Sitter universepecil case of (1) with the specific
form for a(t) of

a(t)=age™"'. (H,=constant) (7.3) in M&W 2)(

7.1 De Sitter universe
It turns out (see below) we get (2) via an equation of 88V use ¢ for energy density, oftenin other books)
p=-& (with cosmological constart = 0) 3)
or equivalently, a positive cosmological constant with nosresxergy or pressure
A >0 (withp=¢£=0 everywhere). 4)

M&W choose to use (3) above, but employ subscripté (7.1) to indicate this is effectively the same as using a
cosmological constamt as in (4). To see how this works out, check the Brief Summm&iCosmology wholeness chart at
www.quantumfieldtheory.infe second block down relations (A) and (B). Either (39ryields the same form for (A) and (B).

(3) may seem a little weird, as any mass density, for coedenass, will decrease as the universe expands (due to greater
volume for same mass). However, if the vacuum itself hasriipey of mass-energy density, one could expect that to stay
constant as the universe expands since, presumably, the vacalinfaitgl thus its properties) will not change during the
expansion. Similar logic for any pressure associated withatewnm, as, for example, in (3).

Constant energy density

The divergence of the energy-momentum tensor gives us
T, =0 DEATI. e=-3+p)2. 5)
’ a
Given (3), the energy densityjis constant in time, and thus so is presgure

Getting (7.3) [our (J)

The Friedmann equation (Einstein’s field equat®y), + Ag,, _8G

i Ty for u=0,v=0 with metric (1)) is



.\ 2 2
(Ej _ H2=_8”Gf+ﬁ-k(ﬁj | ®)
a 3 3 a

wherek = 0 for spatially (3D) flat spaces, 1 for positive curvatBD spaces, and — 1 for negatively curved. M&W treak the
0 case, and also assure 0 (so thesandp, as in (3) act as an effective cosmological constant).

With those assumptions, which make solving (6) easier, we(7gR} (note typos above), with subscrigtswhere
appropriate to remind us that we are dealing with an equetistate that mimics (has the effect of) a cosmological constant.
The solution to (7.2) is (7.3) [our (2)].

General assumptions for de Sitter universe/space

The basic assumptions used by de Sitter, and commonly udefirte the de Sitter universe (from which above relations
are derived) are:

1. The universe is homogeneous and everywhere isotropic. €metnic of (1) is applicable.)
2. Mass-energy density is constant in time and —p andA = 0. ((3) is applicable.)
(Instead of 2, one could take p = 0 but with a cosmological constakt 0.)
Point 1 leads to (6). Point 2 in (6) yields (7.3) [¢2i)].

As an aside, an anti-de Sitter universe/spacé\rag instead of number 2 aboVe.

Getting (7.4)

Using (7.3) [our (2)], where for future convenience we tadfeHi, in (6.1) [our (1)] yields (7.4).
A

Almost halfway down pg. 86 in M&W, we find the canfmal time defined as

o dt
—_ , 7
a0 (7)
which one can compare with pg. 64 near the bottdrarerconformal time is defined as
t dt
n=[—. (8)

a(t)

One can get (7) from (8) if the lower integral ranglue is 4o in (8), where a reversal in upper and lower iraegginge values
will change the sign of the integral.

The question is why isn't that lower value in (8@ or —o? They are more intuitive choices.

The answer appears to be that we can take any lowiewe want to give us a form foy that is convenient. No matter
what that limit, we would in any case have

o _ dt? 2_ 2 2_ 2. 2
dp*=—= - —(a(t)) dn —(a(/7)) dn (9)
(a(t))
to use in the metric (6.1) of pg. 64 to get (6).for any metric of form (6.1), we can use (8)wanhy lower limit on the
integral.

So, on pg. 86, we take a lower limit in (8) ab-because it will turn out to give us a formspthat is most convenient for
future purposes. Then, reversing the limits leadt¢ sign change of (7).

! As a further aside, you may have heard that deSiftace has positive curvature, whereas in oerwagake = 0, which means

flat space, so how can this be? The answer ishbatalue ok reflects the 3D spatial curvature. When one tafldeSitter space as

curved, it means the 4D spacetime is curved. Thef&ize (with same time value everywhere) can beaiait is in our case.
Anti-deSitter space (with < 0 instead of > 0) turns out to have negativecdbvature.



Thus, from (7) and (7.3) [our (2)], where, as naédve, we have takea, :Hi’
A
Ht ' —Hat |®
e o dt © _HA o en oot _ _~HAL _ _ ~Ht
aft)= - N=-| ——x=-Hpl|l e Ndt'=-H\,——=| =e  —-e 7~ =-e '~ (10)
( ) H/\ J.t a(t) J.t (_H/\)t
Getting (7.5)
Using 77 = —e ™At of (10) and the RHS of (9) in (7.4), we get (7.5).
i =— Z(dqz—drz—rz(d92+sin29d¢))) M&W (7.5) (11)
HAn
Note from (10), the limits
-0 <n< 0 . (12)

—_— ——
{=—o t=+o0

Transforming to more convenient coordinates folyais

M&W then use (7.6) to transform to coordinates thadbably seem quite weird, but facilitate analysis with other
transformations used throughout physics, afterirgetbur answers, we can transform back to coordsate can use to
compare our results to physical measurements.

Getting (7.7)

We need to use the transformation (7.6) in (7.5eb(7.7) in terms of new coordinatgsandy. To do that, we need to
find the values for quantities shown below.

sinfj siny

- sSng r=— X M&W (7.6) (13)
COSA + Cos y COSA +CoS y
__cosfdj sinfj(-sin)di _ sin(-siny)dy
Cos7+cosy  (cosij+cos )()2 (cos7j +cos ,\/)2
_ cos/jdij(cos/ +cos x) .\ sin?/d/ ,_singsinxdy 14
B ~ 2 - 2 ~ 2 (14)
(cosf7 +cos x) (cosfj+cosx)” (cos+cosy)

) (coszﬁ +sin?7 )dﬁ +cosfjcos Y +SNASNYAY 45 + cosficos yd7 + sinfsin ydx

(cos/j + cos )()2 (cos/j + cos )()2

dn? =
E (15)
dA? +cos?ficos? ydi 2+ sin 27 sin 2xd y 2+ 2cos/jcos ydi %+ 2sinfisin yd ydA + 2cos/icos y sinfisin yd yds

(cosf +cos )()4

.2
re= Lz (16)
(cosfj +cos x)

o = CoSxdxY _siny(-siny)dy _siny(-sinj)ds
COS/]+COSX  (cosij+cos )()2 (cos7j + cos ,\/)2

(17)

~ (COS/7+COS)()COS)(d)(+ sin? yd y ,_Snxsingdj _ dy+cosijcosydy +sin ysinjdj
- ~ 2 ~ 2 ~ 2- ~ 2 )
(cos/j +cos x) (cosfj+cosx)” (cosj+cosy) (cos/j +cos )



dr? =
18 18)
d x? +cos?/jcos? yd y 2+ sin 2y sin %7d/j %+ 2cosficos xyd y 2+ 2sin ysinfid yd/ + 2cosfi cos y sin y sinfid yd/i

(cos7j +cos )()4

Note for the part of M&W (7.5) [our (11)] wher«iﬁ2 -dr?, termsBS an@5 cancel, as@lo 6 @d 16 .
The other terms give us

d/72 ~dr?

_ di? +cos?fcos? ydii?+sin %7 sin 2yd y %+ 2cosficos ydi >-dy > cos Zicos 4dy %sin sin #idij %2cosfcosydy 2

B (cos7 +cos X)4

_ d/72 - dXZ + [0052/7 cosz)(dﬁ2 - sinzxsinzﬁdﬁ2+ 2cosrjcos ydi 2] + (—cos 2/7 cos Zxd)( 2+ sn 2/7sin Zxd)( 2 2cos/jcos yd y ;
) (cos7j +cos )()4

di? —d)(2+(coszﬁcosz,v—sin2)(sin 2/7+2003/7003)()d/72 +(—coszﬁcosz,v+sinzﬁsinz)(—2cosﬁcosx)d,y2

(cos7j +cos )()4

d/72—d)(2+(coszﬁcoszx—sin2)(sin2/7+2005/7005)()d/7 2—(cos 2/7003 2)(—sin %sin 2X+2c05/7005)()d)( 2

(cos/j+cos x)*
Or,

di? -dy? +(c032/70032)(—sin2)(sin 2/7+2<:03/7cos,\/)(d/7 2_dy 3
dp?-dr?=

(cos/j + cos )()4

e (19)

=(1+c052/70032)(—sin2/75in2)(+2c05/7c05)() N
(cos/ +cos x)
42 —d 2
=(1+c052/7(1—sin2)()—sinzﬁsinz)(+ 2003/7005)()(,7—)()4
(cosf7 +cos x) (20)
=2 2
—(l+cosz~— 252 22 = ) (d’7 _dX)
= /i —cos?/isin? y —sin?jsin 2 y + 2cos/i cos y -
(cos/j + cos x)

42 —d 2
= (1+cos?/j - (coszﬁ + sinzﬁ)sinz)( + 2c0317cos,\/)(,7—)()4
: (cos7j +cos x)

cos? y

472 - d 12
=( 1-sin® y +cos?/j+ 2c03/7c03)()M

(cos/j +cos ,\/)4 (21)
(cos/7+cos ,Y)Z

o -7

= (cos2 X +c0s? /7 +2c0sfj cos ) N
cos/j +cos )

So, finally



5

di? -dx?
dn? -dr? :(—)2. (22)
(cos/7 +cos x)
Using (22) in (7.5) [our (11)], along with the velifors andr of (7.6) [our(13)], we have
di? -dyx?
ds? = (2 -dr2-r2(de+sin6dg)) =, ( )z—rz(d92+sin29d¢)
Han HA7®| (cosr +cos x)
~ 2 dA2 -dy? )
Cos/] + cos U X
_ 1 (cos + cosy) ( )2— X (d6? +sin2dg) (23)
HA sin“/ (cos/j+cosx)” (cosr+cosy)
=1 (472 -dy?-sin?y(do?+sin2ad ) M&W (7.7), pg.86
Hﬁgnzﬁ(n X x| 9 (7.7) . pg

MORE TO COME AT SOME POINT



